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ANATYSTS OF STATIC AEROELASTIC BEHAVIGR

OF LOW-ASPECT-RATIO RECTANGULAR WINGS

By John M. Hedgepeth and Paul G. Waner, dJr.
SUMMARY

Slender-body theory is used 1in conjunction with plate theory to
analyze the static aercelastic-divergence behavior of low-aspect-ratio
rectangular wings of constant thickness when chordwise deformations are
considered. In the analysis, the spanwise variation of the deflection
is restricted to a parabols but the chordwise wvariation is allowed com-
plete freedom. Results show the varigtion of the divergence speed and
mode shape with the aspect ratlo. Comparisons are made with results
obtained by ueing approximste (linear, parabolic, and cubic) chordwise
deflection shapes.

INTRODUCTION

Methods for predicting the divergence speed of wings when chordwise
deformations are neglected have been treated exbtensively in the past.
For wings with fairly large aspect ratios, accurate results have been
obtained; however, for wings with low aspect ratios, the chordwise defor-
mations can no longer be neglected.

A number of analyses are avallable that deal with the effects of
chordwise deformation on divergence. Among them are the works of Miles
(vef. 1) and Biot (ref. 2). Miles considered the chordwise divergence
of a delts wing cantilevered slong its trailing edge. He assumed that
the deformations of the wing were cylindrical with strailght-line gener-
ators in the spanwise direction. Biot, on the other hand, considered an
unswept wing and included both spenwise and chordwise structural effects.
In Biot's work, the use of aerodynamic strip theory limits the value of
his analysis for low-aspect-ratio wings.

In the present paper an analysis is made of the divergence of
very low-aspect-ratio cantilever plates of uniform thickness (see fig. 1).
Allowance has been mede for the presence of additional discrete chordwise
stiffening elements. Although the anslysis includes both spanwise and
chordwise structural effects, primsry emphasis is placed on the chordwise
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deformstions. Indeed, the primary purposes of this study are to deter-
mine the types of chordwise deflection shapes which cen be expected in
very low-aspect-ratio wings and to assess the accuracy resulting from
the use of approximate chordwise mode shapes in aserocelastic analyses.

Slender-body theory (see ref. 3, for example) is used to determine
the aerodynamic loads, and plate theory is used in conjunction with a
potential-energy approach to determine the deformations. Numerical

results are presented for wlngs with various aspect ratios and chordwise
stiffnesses.

SYMBOLS

A aspect ratio

a1, 8p, 83 coefficients defined by equations (17)

c wing chord

D plate stiffness in bending, Et5/12 @ - u2)

E Young's modulus of elasticity

(EI)e total effective bending stiffness of chordwise stiffeners

(See eq. (19).)

(EI)4 bending stiffness of ith stiffener

£(x), £(&) chordwise deflection shape

N total number of chordwise stiffeners

Py (x) generalized serodynamic loading (See eq. (13).)
p(x,y) 1ift per unit area, positive in z-direction

q dynamic pressure, Egi

R coefficient defined by equation (18)

8 wing semispan
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t wing thickness
U free-stream veloclty
Vq generalized aerodynamic leading-edge shear (See eq. (13).)
v(y) leading-edge shear
w(x,y) wing deflection, positive in z-direction
X, Y% coordinate system (See fig. 1.)
«,B,B parsmeters defined by equations (20) and (23)
A divergence-speed parsmeter, 21 EEE
48 D
K Poisson's ratio
£, nondimensionsl coordinates x/s, y/s, respectively
I total potential energy of the system
o dummy varigble of integration for ¥
o) free-~-gtreem density of fluid
¢(x,y,z) perturbation veloclty potential
Subscript:
i integer denoting stiffener number (See fig. 1.)

ANATYSTS

The wing confliguration considered herein consists of & rectangular
plate of constant thickness with a number of constant-stiffness beams
in the chordwise direction (fig. 1). The wing is assumed to be supported
along its center line and only symmetricel deflections are considered.

The analysis 1s based on the assumption that the aspect ratlo of
the wing 1s very low. For such a wing, the deflections will generally
vary in & much more complicated menner in the chordwise (x) direction
than in the spamwise (y) direction. It therefore seems reasonsble to
agsume a slmple spauwise variation for deflection and allow the chordwise
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varistion to be arbitrary. Since the simplest type of spanwise defor-
metion compstible with the support boundery conditions is a parabola,
the following esssumed deflection shape 1s used in the analysis:

w(x,y) = y2r(x) (1)
where f(x) i1s the chordwise deflection shape.

The assumption of low aspect ratio also implies that Jones' slender
body theory (ref. 3), in which streamwise perturbations are considered
negligible in comparison with perturbations in the crossflow directioms,
can be used to determine the serodynamic loading caused by the deforms-
tion of equation (1). Although slender-body theory is exact only in the

limlt (l - ME')A2 -0, it is employed herein because of its ease of

epplication; the use of slender-body theory leads to a particulexrly sim-
ple formulation of the divergence problem end, hence, allows a detalled
investigetion of the divergence behavior of very low-aspect-ratlo wings.

In order to determine the deformations resulting from serodynamic
loads, plste theory is employed. The principle of minimum potential
energy is used to derive the differential equation of equilibrium for
the function f£f(x). In applying this principle, the difficulties arising
from the presence of nonconservative forces are cilrcumvented by treating
the loads as flxed quentities during the variation. The aerodynamic loadt
are then substituted into the differentiasl equation end the solution 1s
obtained.

Aerodynemic Forces

For slender-body theory, the velocity-potential equation for line-
arized flow reduces to Leplace's equation in the crossflow plane:

2
%;% + % _ 0 (2)

dz2

The boundary conditions are

ég (nyJO) = Uye

™ (3)

&R

on the wing and ¢ = O at the tips. Furthermore, derivatives of the
potential at infinity must be zero.
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It 1s desired to calculate the potential ¢ end hence the pressure
distribution resulting from the given deformstion shape.

In order for equetion (2) to be satisfied, with the boundary con-
dition that ¢ O &gt the tips, the followlng relationship between

Sg (x,y,40) (the limit of J3¢/dy as =z approaches zero from sbove)

and %g (%,¥,0) must exist (ref. L):
z

g (x,y,+0) _ 1 jf Vs2 8¢(x,0,0) )
y oy T

Substituting ég (x yv,0) from equation (3) and integrating gives
a dJ )
z

#(x,y,+0) = -3 f'(X)( + y2> 2 _y? (5)

where the prime denotes differentiztion with respect to x.

The 1ift per unit area of a thin wing in terms of the velocity
potentigl is

p(x,y) = 20U éﬁ(—}fa’lﬁ-g-)-
X

Thus, the 1lift per unit area is, by substitution from equation (5),

p(x,¥y) ——% f"(!t)( + y2> 2._y2 (6)

In addition to the distributed pressures acting on the wing, there
is a concentrated load acting along the leading edge. This concentrated
load arises as a result of the gpplication of the slender-body theory to
the rectangular plan form; that is, the veloclity potential 1s zero ahead
of the leading edge and then jumps to a finite value at the leading edge.
The magnitude of the resulting concentrated load is '

V(y) = 20U¢(0,y,+0)
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which gives, by use of equation (5),

V(y) =-% qf'(O)(%e- + ya) 82 - y°2 (7)

Structural Equilibrium

The total potentiel energy of the system under considerstion con-
sists of the strain energy of the wing plus the potential energy of the
serodynamic forces. The strain energy of the wing 1s made up of the
strein energy of the plate (ref. 5)

32 3% % 22\
f f (axz) (ay2> M- <S£a_y) e

and the energy of bending of the chordwise stiffeners (N in number)

Z: (EI)ij;c [J——M x’yi:rdx

o] fo

dx2

In these expressions, D is the plate stiffness (Et5/ 12(1 - uz)), (BI)4
is the bending stiffness of the ith stiffener, and y; 1s the spanwise

coordinste of the ith stiffener. (Note that because of symmetry, only
helf of the wing is considered.)

The foregolng analysis of the aerodynemic forces has indlcated that
the wing loads are composed of two parts, a distributed 1ift p(x,y)

and a concentrated load V(y) located at the leading edge. The poten-
tial energy of the 1ift per unit area is

—b/;c_/:’ p(x,y)w(x,y)dy ax

end the potentisl energy of the concentrated load is

S
- fo V(y)w(0,y)dy
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The total potential energy of the system is the sum of these different
energies, or

32 3% % 22 |2
f f Kax-?) <ay2> PR SR e T A (@)J@ G+
b c| % (x, 2 c A8
%Z (EI)ij; [ gxgyi:\ dx —fo j; p(x,y)w(x,y)dy ax -

S
fo V(y)w(0,y)dy (8)

Substitution of the expression for w(x,y) given by equation (1)
into equation (8) results in the following expression for the total
potential energy:

c N 5
I = gf — + % Z (EI)lyi gn? + bst® 4 15" 8 uff" +
0

i=
_g. s3(1 - p)r'@b ax -‘/;c P1(x)f dx - V;£(0) (9)

where

8
Py (x) =.£ p(x,y)yedy
(10)

S
Vi = L V(y )Yedy




8 NACA TN 3958

Minimization of the potential-energy expresslon by means of the
calculue of verliastions gives

B3Il = 0O

N
C

= _D_f 8 ., % E (EI)1y1 ¥ 58"2 + hese2 + % sdus(£e™) +
0

8 c
3 s3(1 - lu)af'2 dx -f P1(x)8f dx - V18£(0)
0

Integrating by parts and collecting terms results in the differential
equation

N
-8 . P, (x)
%Z (EI)iyi + (_12_]-15___) sJ" + Usf = lD (11)
i=1

and the following boundary condiltlons:

At both x =0 and x = c,

N

>
55- + % Z (EI)iyih' £ % s7uf = O (12a)
i=1
At x =0,
5 N v
%__,_%Z(El)iy £ _8_:_19& edp! _Té’—._ﬁo (12b)
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At x = ¢,

N
% + %Z (BT) ;4| e™ - LE}-TIO;_Q s5f' = 0 (12¢)
T=T

Aercelastic Solution

The differential equatlon and boundary conditions which describe
the deflection of the structure due to the generallzed serodynamic loads
P1(x) and V; are given by equations (11) and (12). The values of the

generalized loads can be obtained by substituting p(X,Y)_ end V(y)
(eas. (6) and (7)) into equations (10). This substitution gives

.
Py (x) =-f% S6qf"(x)

S (13)

If these values of Pl(x) and V; are substituted into the differential

equation (11) and the four boundasry conditions (egs. (12)), and the egua-
tions are nondimensionalized by letting —

uw
It
niX

and
i = =
the differential equation becomes

£TV(E) + (A - ag)£"() + R £(2) = 0
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The four boundary conditions become:

At £ =0 or &

£7(8) + 2 £(e) = 0

At & =0,
S
1t ll" a2 1
") + E%(x - aq> - j%]f (¢) =0
At & =8,
11y )+ 1 —
£"(e) - ¢ a5t (¢) =0
where
\ = on 982
48 D
and
]
10
w56 -3)
10
8y = ‘gE L

NACA TN 3958

(15)

(16)

(17)

(18)

e
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In equation (18), (EI)e is the total effective bending stiffness of
the chordwise stiffeners and is defined as

N
(21), = Z (ED)4n, " (19)
i=1

The characterlstic roots of the differential equation are

NS

The roots can be seen to be dependent on the value of (K -.al). For
(K - al)2 > BR, all the roots are imaginary; for (K - al)2 < 5R, there
are two pairs of conjugate complex roots. Consider first (K - al)2 > 5R.

For this case, the characteristic roots of the differential equation cen
be written

+i(a £ B)

where

a1) + |5R

It
o=
—
TN
>
1

(20)

° = Ik

The solutlon to the differential egquation is then

o) - =

£(¢) = Cp cos(a + B)E + Cp sin(a + B)E +

Cz cos(a - B)E + Cy sin(a - B)E (21)
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The value of f(¢) 1s now substituted into the boundery conditions
given by equations (15) 3 this substitutlion ylelds a set of homogeneous
equations In the constants Cp, Co, 05, and C). The existence of a

nontrivial solution requires that the determinant of the coefficients
be equal to zero, or

bl 0 b2 0
by cos(a + B)E Dby sin(q + B o cos(a - B)E b2 sin(a - B)E
0 'b3 0 bl

~bs sin(a + B)-g- by cos(a + [3)% -bg sin(a - B)% bg cos(a - B)g

where

- (o + 8)2

|8

b2=—2-(0&-l3)2

R
b5 = (a + B) £a+B)2+%2-—%(7\ - al)]
m=<a-mga-m2+%-§(-%ﬂ
bs = -(a + B)[—% az + (o + 5)2]
bg = -(a - B)[%— az + (o - B)a:l

After the determinant has been expanded and simplified, the following
equation is obtained:

iﬁL=@f“‘%+%m'%+%) (22)
Sinaa, @ (—7\ + a1 + Aj)(-)\ - a; - A)-l-)

nlo

n|o
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where

2
1 ,/R ag 1
-3 5( '4_R_>+'2'a2

L) - (- 2)

A) >
Equation (22) is valid only when (K - al)2 2 5R. For values of
(% - ai)a < 5R, the quantity B becomes imaginary. The corresponding

divergence equatlon_cen be obtained directly from equation (22) by
replacing B by 1B where

5= |2\ - (- o) (25)

The result is

(2k)

sinh?B % _ (§>2R)\— &y + Al)(% - a; + A2)
sin2m % B E L(—?\ + a7 + A3)(7\ - a1 - AJ_I_)

Equation (22) (or (24)) gives an implicit relationship between the
serodynemic parameter N\ and the structural parsmeters (EI)e/éD, L,

and c/s. If (EI)e/sD and p are fixed, then the values of Ap are
known and the variation of A\ with c/s can be computed by a trial-
and~error process. Since c/s appears in equabion (22) (or (24)) more
simply than A, this computation can be accomplished most easily by
choosing values of A and solving for the corresponding values of c/s,
where they exist.
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Approximate Solution

In the serocelastic analysis of low-aspect-rstio wings of practical
constructlon, a closed-form solution such as that described in the pre-
ceding section would not be feasible; some sort of further approximation
would be necessary. One type of approximate procedure is to restrict
the allowable chordwise deflection shape to a polynomiel of finite degree.
The present configurstion (fig. 1) furnishes an excellent test for the
accuracy of this procedure.

The consequences of eassuming linesr chordwise deflections can be

(EI)
obtained by allowing the chordwise stiffeners to be rigid 5 € = .

In order to obtain results for higher degrees, it 1s necessary to start
with the energy expression (eq. (9)). Ietting

£(x) =do + dl(§> + dg(§>g + d5(3;->5 ..

then minimizing the potential energy with respect to d;, do, d5 . o ey
and finally substituting the eppropriaste expressions for P; and Vp

from equaetions (13) ylelds a set of homogeneous simultaneous equations.
For the cubic approximetion, the equations are:

— -
5(c A c
5 _2-<-S—> + -CTS- B2 + 2A B5_ + 3A 5 do 0
5/2 By Bx + A Be + 2\ o |[d1 0
= (25)
_Bi_. .Bé_ By + 2\ By + 2N S do 0
(c/5)2 o/s 3 rrens
B B B 6
5 6 7 .1
+ = A Bg + = A= d5 0
(c/s)3 (c/s)2 /s = 2 >3
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where

The velue of N can now be found for known values of (EI)e/sD, K,

and c/s by setting the determinant of equation (25) equal to zero.
For the parabolic approximstion, the corresponding determinant can be
found by deleting the last row and column of the mstrix in equation (25).

Computed results as obtained from this approximste analysis as well
as those obtained from the more exact analysis are presented and dis-
cussed in the following section.
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RESULTS AND DISCUSSION

The results of the exact divergence-speed calculations for a low-
aspect-ratio wing for which Polsson's ratio equals 1/3 are shown in
figure 2. The terms "exact" and "approximate" are used to denote exact
and epproximate solutions to the approximate formuletion of the static
aeroelastic problem presented herein. In this figure (fig. 2) the
results are given 1n the form of a plot of the divergence~-speed param-
eter A\ against c/s 'for various values of the beam-to-plate stiffness
ratio (EI)e/sD. Results are shown only for values of c¢/s greater

than unity because of the obvious limitations of the slender-body theory
for smeller values. As is to be expected the effect of adding chordwise
stiffness to the wing 1s to increase the divergence speed. The values
of A for (EI)e/sD = o (corresponding to a wing in which the chord-

wise bending is neglected) increase without limit as c/s becomes large
(or aspect ratio becomes smell). On the other hend, the values of A
for a finite (EI)e/sD apperently reach a constant value. The curves

actually undulate slightly; however, the deviation from a straight line
is so small that it 1s not apparent in the figure.

The accuracy of the linear, parabolic, and cublc approximstions
for the chordwise deflection shape is illustrated in figure 3. In this
figure the varistion of AN with c/s for the approximate solutions is
compared with that for the "exact" solution for the case of zero chord-
wise stiffening. It can be seen that the linear aspproximation is unsat-
isfactory for all values of c/s greater than unity. The parabolic
approximation gives values of A accurate to within 10 percent of the
exact value for c/s less than 2.2. The range of this accuracy is
extended for the cublc approximation to c/s equal to k4.

An examinatlion of the mode shapes at dlvergence 1s of 1interest.
The mode shapes for (EI)e/sD = 0 are shown in figure 4 for three

values of c¢/s. These values of c/s correspond to the positions indi-
cated by the ticks on the curve for (EI)e/éD =0 1in figure 2. It can
be seen that the effect of increasing c/s 1s essentially to extend
the mode shape rearward; the shape near the leading edge changes only
slightly.

Also shown in figure 4 is the mode shape for c/s = «. This shape
can be obtained in the following manner:

For all the solutions obtained for finite c/s, the parameters are
such that the value of B (eq. (20)) is imeginary; therefore, two of
the homogeneous solutions of the differential equation (14) approach
zero and two approach infinity as & approaches infinity. If the latter
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two solutions axre omitted, an equabtion governing divergence 1s obtained
through the use of the boundary conditions at the leading edge only.
This equation is

7\=al+A3 (26)

which gives an asymptotic value that agrees within plottable accuracy
with the flat portions of the curves in figure 2. The corresponding
mode shape is

e'Bgsin(ag + 8)

hig = 2
(&) 2.2 (27)
where
6 = tan'l = 2ap —_—
'ﬁa - a2 + B%

Note that equations (26) and (27) hold for finite values of (EI), /sD
as well as for (EI)e/sD = 0. The varistion of A for large c/s with
(EI)e/sD is shown in figure 5. The increase in divergence speed resulting

from chordwlse stiffeners is clearly evident.
CONCLUDING REMARKS

The present analysis of the static sercelastic divergence of low-
aspect-ratio rectangular wings indicates that the deflection shape in
the chordwise direction has an increasing number of waves as the aspect
ratio is reduced. The inclusion of additional chordwise stiffening
reduces the amount of chordwise bending and, consequently, increases the
divergence speed. Approximsting the chordwise deflection shape by para-
bolic and cubic curves ylelds divergence speeds in failr agreement with
the predictions of the more exact theory if the aspect ratio 1s not too
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low. The cubic approximation is more accurate than the parsbolic one
primarily in that configurations of lower aspect ratio can be treated
without the error becoming excessive.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., January 24, 1957,
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